

 Phoenix Live Favicon

 v0.2.0

 Table of contents

 	README

 	Guides

 	Changelog

 	Contributing

 	License

 	Modules

 	Phx.Live.Favicon

README

[image: Build Status]
[image: Last Updated]
[image: Hex.pm]
[image: Hex.pm]
Phoenix Live Favicon
[image: Example]
A lib enabling dynamic favicons in Phoenix Live View applications.
To show...
	...a message counter
	...the result of a CI/CD job
	...a summary of all monitor statuses
	...a spinner while uploading a file

Using a dynamic favicon allows users to view a status without
having the page in front.
Basic Operations
	set or remove any attribute
	add a class name or remove a class name
	toggle a class

Special Operations
In addition to these basic operations this library includes some
special operations to help with common use cases.
Reset a favicon to its initial value
The initial attribute values of favicons are preserved on the first load
of the website and can be restored using reset/0. This is in particular
useful to erase all previous changes when a user visits a new
page by including reset/0 in the on_mount hook.
Set the value of a placeholder (mimicking Phoenix's assign)
Common use cases are:
	Changing the path of favicons when multiple sizes are defined
	Changing a dynamic value within an SVG favicon

Create and restore snapshots
By creating a snapshot of the favicon after multiple operations, you can
restore the favicons' attributes by only sending the snapshots' name over
the wire.
Documentation
Visit the documentation of Phx.Live.Favicon module
for the full list of operations.
Guides and Example
See the Guides page for common use cases.
The Example App demonstrates various
use cases and includes a 'debug frame' which shows the HTML of favicon head elements in real time.
[image: Example App Preview]
To start this example:
	Run git clone https://github.com/BartOtten/phoenix_live_favicon_example
	Go inside the folder with cd phoenix_live_favicon_example
	Install dependencies with mix deps.get
	Start Phoenix endpoint with mix phx.server or inside IEx with iex -S mix phx.server

Installation
The package can be installed by adding phoenix_live_favicon to your list of dependencies in mix.exs:
def deps do
 [
+ {:phoenix_live_favicon, "~> 0.2.0"}
]
end
To include the necessary client side Javascript, import the Javascript module
from dependency Phoenix Live Head in assets/js/app.js
import "phoenix_html"
// Establish Phoenix Socket and LiveView configuration.
import { Socket } from "phoenix"
import { LiveSocket } from "../vendor/phoenix_live_view/"
import topbar from "../vendor/topbar"
+ import "phoenix_live_head"

Guides

This pages includes guides for common use cases.
Dynamic favicon path
This example will explain how to use a placeholder in the favicons' href-attribute to
switch between the default, a green and a red favicon.
1. Add one or multiple sizes of your favicon to your applications' main template.
<!-- in /templates/layout/root.html.heex -->
<link rel="icon" type="image/png" href="images/favs/favicon-32x32.png">
<link rel="icon" type="image/png" href="images/favs/favicon-16x16.png">
This is the default favicon.
2. Add placeholder attributes to the link elements from step 1
In order to use a dynamic value you need to add a 'template' for each attribute
using the dynamic value. For this we add a dataset attribute. The naming scheme
is data-dynamic-[attr].
The result for having a placeholder named subfolder
in the href-attribute is:
<link [...] data-dynamic-href="images/favs/{subfolder}/favicon-32x32.png">
<link [...] data-dynamic-href="images/favs/{subfolder}/favicon-16x16.png">
3. Set the dynamic value from your code
You can set the value of the placeholder using set_dynamic/2.
socket =
 socket
+ |> Phx.Live.Favicon.set_dynamic("subfolder", "green")
The resulting HTML in the browser will now be:
<link [...] href="images/favs/green/favicon-32x32.png">
<link [...] href="images/favs/green/favicon-16x16.png">
Changing the favicon to red:
socket =
 socket
+ |> Phx.Live.Favicon.set_dynamic("subfolder", "red")
Results in:
<link [...] href="images/favs/red/favicon-32x32.png">
<link [...] href="images/favs/red/favicon-16x16.png">
To reset the favicon to it's default call Favicon.reset(socket).

Dynamic SVG
While dynamic paths allows you to switch favicons, those are still
not dynamic on their own. For this you need a vector favicon (SVG).
This example will explain how to use a placeholder in the favicons' href-attribute to
show a counter and change the background color of the counter.
1. Add the SVG favicon to your applications' main template
<link [...]
 href="data:image/svg+xml,
 <svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'>
 <circle cx='50' cy='50' r='50' fill='SteelBlue' />
 <text x='50%' y='50%' [...]>
 0
 </text>
 </svg>
">
2. Add placeholder attributes to the link elements from step 1
In order to use a dynamic value you need to add a 'template' for each attribute
using the dynamic value. For this we add a dataset attribute. The naming scheme
is data-dynamic-[attr].
In this example we add two placeholder: counter and counter_background
<link [...]
+ data-dynamic-href="data:image/svg+xml,
+ <svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'>
+ <circle cx='50' cy='50' r='50' fill='{counter_background}' />
+ <text x='50%' y='50%' [...]>
+ {counter}
+ </text>
+ </svg>
+ "
>
3. Set the dynamic values from your code
count = socket.assigns.counter

socket =
 socket
+ |> Phx.Live.Favicon.set_dynamic("counter", counter + 1)
+ |> Phx.Live.Favicon.set_dynamic("count_background", "DarkOrange")

Mixing PNG and SVG
Mixing different types of favicons is not recommended but has it's use case. It
allows you to have multiple sizes defined for the PNG favicon while still being
able to use a dynamic SVG favicon.
Note
Consider combining a single <link rel='icon'> with a ico file. This allows
you to manipulate one single elements' type and href; greatly reducing complexity.

This example will explain how to make use of the behaviour of browsers to
switch between PNG and SVG favicons.
1. Add the favicons to your applications' main template
Follow the first two steps from the two chapters above. Make sure the SVG
favicon comes last. The end result should be both PNG and SVG favicons
in your main template.
2. Add classnames to your favicons
Add class names your your favicons specifying which types they are. For example:
<link class="png" href="images/favs/red/favicon-32x32.png" [...]>
<link class="png" href="images/favs/red/favicon-16x16.png" [...]>
<link class="svg" href="data:image/svg+html....." [...]>
Now we can target different types of the favicon by using the class names.
3. Let the browser use the SVG
Browsers automatically pick a favicon to use when multiple options
are provided. We exploit this behaviour to switch between PNG and SVG.
Set the href of the favicons with png class name to a null value.
You will need to use the underlying lib Phoenix Live Head which you
already have installed as Phoenix Live favicon depends on it.
socket =
 socket
 |> Phx.Live.Head.push(".png", :set, :href, "")
 |> Fav.set_dynamic("counter", counter + 1)
 |> Fav.set_dynamic("counter_bg", DarkOrange")
The browser will reconsider all favicon options and pick the SVG as it's the
only one with a valid value.
4. Let the browser use the PNG
To switch back to the PNG favicons set their href to a valid
value. Have a look at snap/3 and restore/3 to make this process
easier.

Changelog

v0.2.0
This release add some new features to keep the code in your application tidy. The doc
section also received a much welcome Guides page.
Features
Create and restore snapshots
Store the result of multiple operations under a chosen name and restore it
at a later time using snap and restore.
	snap - Takes a snapshot of all attribute values.
	restore - Applies a snapshot to selected elements.

Usage example
In the Live Favicon Example application it is used to send all changes required to switch
between an dynamic SVG counter and static PNG message-icon once, and toggle the
state between them; creating a flashing notification. As it also makes a snapshot of the state
before the favicon begins to flash, the icon on the page can be restored to it's
value as soon as the user read the unread messages.
Use multiple placeholders
You can now use multiple custom named placeholders, instead of only one {dynamic} per attribute.
<link [...]
 data-dynamic-href="data:image/svg+xml,
 <svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'>
 <circle cx='50' cy='50' r='50' fill='{counter_background}' />
 <text x='50%' y='50%' [...]>
 {counter}
 </text>
 </svg>
 "
>
Fixes
	Unstable order of change execution when using multiple queries / libs.

BREAKING
	the attribute value of dynamic is now used as name for the target placeholder. As a result, it is not
possible anymore to target a specific attribute. Migration is as easy as using different names per attribute
when necessary.

v0.1.1
	Breaking: remove_attr/3 has been replaced by remove_attr/2
	Require Phoenix Live Head ~> 0.1.2

v0.0.1
Initial commit

Contributing to Phoenix Live Favicon

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved!
Using the issue tracker
Use the issues tracker for:
	Bug reports
	Submitting pull requests

Please do not use the issue tracker for personal support requests nor feature requests.
Feature and support requests should be created on the Elixir forum and be tagged with at least phoenix_live_head
	Support Request
	Feature Request

We do our best to keep the issue tracker tidy and organized, making it useful
for everyone. For example, we classify open issues per perceived difficulty,
making it easier for developers to contribute to Phoenix Live Favicon.
Bug reports
A bug is either a demonstrable problem that is caused by the code in the repository,
or indicate missing, unclear, or misleading documentation. Good bug reports are extremely
helpful - thank you!
Guidelines for bug reports:
	Use the GitHub issue search — check if the issue has already been
reported.

	Check if the issue has been fixed — try to reproduce it using the
master branch in the repository.

	Isolate and report the problem — ideally create a reduced test
case.

Please try to be as detailed as possible in your report. Include information about
your Erlang, Elixir, Phoenix and Phoenix LiveView versions. Please provide steps to
reproduce the issue as well as the outcome you were expecting! All these details
will help developers to fix any potential bugs.
Example:
Short and descriptive example bug report title
A summary of the issue and the environment in which it occurs. If suitable,
include the steps required to reproduce the bug.
	This is the first step
	This is the second step
	Further steps, etc.

<url> - a link to the reduced test case (e.g. a GitHub Gist)
Any other information you want to share that is relevant to the issue being
reported. This might include the lines of code that you have identified as
causing the bug, and potential solutions (and your opinions on their
merits).

Feature requests
Feature requests are welcome and should be discussed on the Phoenix Live favicon topic on the Elixir forum. But take a moment to find
out whether your idea fits with the scope and aims of the project. It's up to you
to make a strong case to convince the community of the merits of this feature.
Please provide as much detail and context as possible.
Pull requests
Good pull requests - patches, improvements, new features - are a fantastic
help. They should remain focused in scope and avoid containing unrelated
commits.
IMPORTANT: By submitting a patch, you agree that your work will be
licensed under the license used by the project.
If you have any large pull request in mind (e.g. implementing features,
refactoring code, etc), please ask first otherwise you risk spending
a lot of time working on something that the project's developers might
not want to merge into the project.
Please adhere to the coding conventions in the project (indentation,
accurate comments, etc.) and don't forget to add your own tests and
documentation. When working with git, we recommend the following process
in order to craft an excellent pull request:
	Fork the project, clone your fork,
and configure the remotes:
Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/phoenix_live_favicon
Navigate to the newly cloned directory
cd phoenix
Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/BartOtten/phoenix_live_favicon

	If you cloned a while ago, get the latest changes from upstream, and update your fork:
git checkout master
git pull upstream master
git push

	Create a new topic branch (off of master) to contain your feature, change,
or fix.
IMPORTANT: Making changes in master is discouraged. You should always
keep your local master in sync with upstream master and make your
changes in topic branches.
git checkout -b <topic-branch-name>

	Commit your changes in logical chunks. Keep your commit messages organized,
with a short description in the first line and more detailed information on
the following lines. Feel free to use Git's
interactive rebase
feature to tidy up your commits before making them public.

	Make sure all the tests are still passing.
mix test

	Push your topic branch up to your fork:
git push origin <topic-branch-name>

	Open a Pull Request
 with a clear title and description.

	If you haven't updated your pull request for a while, you should consider
rebasing on master and resolving any conflicts.
IMPORTANT: Never ever merge upstream master into your branches. You
should always git rebase on master to bring your changes up to date when
necessary.
git checkout master
git pull upstream master
git checkout <your-topic-branch>
git rebase master

Thank you for your contributions!
Guides
These Guides aim to be inclusive. We use "we" and "our" instead of "you" and
"your" to foster this sense of inclusion.
Ideally there is something for everybody in each guide, from beginner to expert.
This is hard, maybe impossible. When we need to compromise, we do so on behalf
of beginning users because expert users have more tools at their disposal to
help themselves.
The general pattern we use for presenting information is to first introduce a
small, discrete topic, then write a small amount of code to demonstrate the
concept, then verify that the code worked.
In this way, we build from small, easily digestible concepts into more complex
ones. The shorter this cycle is, as long as the information is still clear and
complete, the better.
For formatting the guides:
	We use the "elixir" code fence for all module code.
	We use the "console" code fence for iex and shell commands.
	We use the "html" code fence for html templates, even if there is elixir code
in the template.
	We use backticks for filenames and directory paths.
	We use backticks for module names, function names, and variable names.

MIT License

Copyright (c) 2022 Bart Otten
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Phx.Live.Favicon

Provides commands for manipulating the Favicon of Phoenix Live View applications
while minimizing data over the wire.
The available command actions support a variety of utility operations useful for
Favicon manipulation. Such as setting or removing tag attributes and
adding or removing CSS classes for vector (SVG) favicons.
The elements selected for manipulation are found by Javascript client code
document.querySelectorAll("link[rel*=icon]").

 Anchor for this section

 Summary

 Types

 attr()

 class_name()

 name()

 placeholder()

 value()

 Functions

 add_class(socket, class_name)

 Add a class_name to the list of classes on all favicon link elements

 remove_attr(socket, attr)

 Remove an attribute from all favicon link elements

 remove_class(socket, class_name)

 Remove a class_name from the list of classes on all favicon link elements

 reset(socket)

 Reset all favicon link elements to their initial values

 reset_attr(socket, attr)

 Reset an attribute to it's initial value on all favicon link elements

 restore(socket, name)

 Restore snapshot with name

 restore_attr(socket, name, attr)

 Restore an attribute from snapshot with named name

 set_attr(socket, attr, value)

 Set a new value to the attribute on all favicon link elements

 set_class(socket, class)

 Set the class on all favicon link elements

 set_dynamic(socket, placeholder, value)

 Set the value of a {placeholder} on all favicon link elements

 snap(socket, name)

 Make a snapshot with name name of all favicon link element attribute values

 snap_attr(socket, name, attr)

 Create a snapshot named name of an attribute from all favicon link element

 toggle_class(socket, class_name)

 Toggle class_name on all favicon link elements

 Anchor for this section

Types

 Link to this type

 attr()

 View Source

 @type attr() :: Phx.Live.Head.attr()

 Link to this type

 class_name()

 View Source

 @type class_name() :: String.t()

 Link to this type

 name()

 View Source

 @type name() :: Phx.Live.Head.name()

 Link to this type

 placeholder()

 View Source

 @type placeholder() :: Phx.Live.Head.name()

 Link to this type

 value()

 View Source

 @type value() :: Phx.Live.Head.value()

 Anchor for this section

Functions

 Link to this function

 add_class(socket, class_name)

 View Source

 @spec add_class(Phoenix.LiveView.Socket.t(), class_name()) ::
 Phoenix.LiveView.Socket.t()

Add a class_name to the list of classes on all favicon link elements

 Link to this function

 remove_attr(socket, attr)

 View Source

 @spec remove_attr(Phoenix.LiveView.Socket.t(), attr()) :: Phoenix.LiveView.Socket.t()

Remove an attribute from all favicon link elements

 Link to this function

 remove_class(socket, class_name)

 View Source

 @spec remove_class(Phoenix.LiveView.Socket.t(), class_name()) ::
 Phoenix.LiveView.Socket.t()

Remove a class_name from the list of classes on all favicon link elements

 Link to this function

 reset(socket)

 View Source

 @spec reset(Phoenix.LiveView.Socket.t()) :: map()

Reset all favicon link elements to their initial values

 Link to this function

 reset_attr(socket, attr)

 View Source

 @spec reset_attr(Phoenix.LiveView.Socket.t(), attr()) :: Phoenix.LiveView.Socket.t()

Reset an attribute to it's initial value on all favicon link elements

 Link to this function

 restore(socket, name)

 View Source

 @spec restore(Phoenix.LiveView.Socket.t(), name()) :: map()

 Restore snapshot with name

 Link to this function

 restore_attr(socket, name, attr)

 View Source

 @spec restore_attr(Phoenix.LiveView.Socket.t(), name(), attr()) :: map()

 Restore an attribute from snapshot with named name

 Link to this function

 set_attr(socket, attr, value)

 View Source

 @spec set_attr(Phoenix.LiveView.Socket.t(), attr(), value()) ::
 Phoenix.LiveView.Socket.t()

Set a new value to the attribute on all favicon link elements

 Link to this function

 set_class(socket, class)

 View Source

 @spec set_class(Phoenix.LiveView.Socket.t(), class_name()) ::
 Phoenix.LiveView.Socket.t()

Set the class on all favicon link elements

 Link to this function

 set_dynamic(socket, placeholder, value)

 View Source

 @spec set_dynamic(Phoenix.LiveView.Socket.t(), placeholder(), value()) ::
 Phoenix.LiveView.Socket.t()

Set the value of a {placeholder} on all favicon link elements

 dynamic-attributes-placeholders

 Dynamic attributes / placeholders

To use a dynamic value for an attribute, the element must have an additional
data-dynamic-[attribute] attribute with a value containing a named
placeholder. For example: {sub} in attribute href.
Example
 <!-- data-dynamic-href is set -->
 <!-- {sub} is used in it's value -->
<link rel='icon' href="default_fav.png" data-dynamic-href="favs/{sub}/fav-16x16.png">
When an event is pushed with set_dynamic("sub", "new_message") the result will be:
<link rel='icon' href="favs/new_message/fav-16x16.png">

 Link to this function

 snap(socket, name)

 View Source

 @spec snap(Phoenix.LiveView.Socket.t(), name()) :: map()

 Make a snapshot with name name of all favicon link element attribute values

 Link to this function

 snap_attr(socket, name, attr)

 View Source

 @spec snap_attr(Phoenix.LiveView.Socket.t(), name(), attr()) :: map()

 Create a snapshot named name of an attribute from all favicon link element

 Link to this function

 toggle_class(socket, class_name)

 View Source

 @spec toggle_class(Phoenix.LiveView.Socket.t(), class_name()) ::
 Phoenix.LiveView.Socket.t()

Toggle class_name on all favicon link elements

 OEBPS/assets/example.gif
LR] @ | & OnMount pagetitle by LiveFav X =+

< C @ O D localhost:4000

OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

OEBPS/assets/example_app_preview.jpeg
&;’2‘ Phoenix Framework

Using {dynamic}

‘Shows how only the dynamic part (green, red, new_message) of a favicon is sent over the wire.

‘The full path is constructed clent-side.

J0B SUCCEEDED JoB FAILED

Set full value

Setting a attributes value is of course as easy as it should be. Here we set an SVG,

SVG Message Counter

‘This example uses two saved states (‘message' and ‘counter’) which are set on Interaction.
When the count is greater than 0, the favicon will switch between them.

An operation to loop statos without tho server sending switch instructions wil me addod soon,

-- gl i oy

Gt Started

State

State can be preserved by making a backup under a given name. This named saved state or a
part of it can be restored at any time.

Reset to initial

‘The initial state is saved under key ‘orig" when the page is loaded. This allows you to reset to
the intial state at any moment.

HREF ATTRIBUTE ONLY ALL ATTRIBUTES

Test OnMount reset

Using a on_mount-hook including Phx Live.Favicon.reset/0 will resat the Favicon to its inital
state on page load.

Go to other page

